



Lesson activity: GCSE to A-level progression (Chemistry) answer booklet

Published: November 2020

Contents	Page
Transition activities 1-3 Scientific vocabulary	3-4
Transition activity 4 SI units and prefixes	5
Transition activity 5 Converting data	5
Transition activity 6 Using the delta symbol	6
Transition activity 7 Practical skills: Electrolysis	6
Transition activity 8 Maths skills	7
Transition activity 9 Atoms	7
Transition activity 10 Formulae of common compounds	7
Transition activity 11 lons and ionic compounds	8
Transition activity 12 Empirical formula	9 - 10
Transition activity 13 Balancing equations	11
Transition activity 14 Moles	11
Transition activity 15 Isotopes and calculating relative atomic mass	11
Transition activity 16 Extended writing: Types of bonding	12

	_	
Act	ivity	/ 4 SI units and prefixes
1.		
	a.	Kg - As the mass of water will be much less than a kilogram it could be expressed using power of ten (eg 1 gram would be written as 1x 10 ⁻³ kg.
	b.	cm ³ - Volume is a derived SI unit, and is measured in cubic meters written as m ³ . The volume in a burette is small and so the centi prefix is used to express a volume as centimeters cubed, written as cm ³ .
	C.	S
	d.	picometres – length is measured in metres but as the length is so small the prefix pico is used.
	e.	mol
	f.	Kelvin
2.		
	a.	500 cm ³
	b.	300 s (seconds)
	C.	293.1 K -
		294.261K – To convert Fahrenheit to kelvin (F – 32) × 5 ÷ 9 + 273.15
	e.	1 x 10 ⁻⁵ m ³
		5 500 kg
	g.	9.64 x 10 ⁻⁸ m ³ - SI units 1 µI = 1 x 10-9 m ³
3.		e flow rate of the critical chemical was reported as 0.24 kg per 60 seconds x 10 ⁻³ kg per second) at a temperature of 293.1 K.

Activity 5 Converting data

- 1. 100mm
- 2. 10mm
- 3. 1.04 x 10⁻⁵ g
- 4. 1120.2 m or 1.1202 x 10³
- 5. 7 000 ml or 7.0 x 10³ ml
- 6. 7 liters
- 7. 0.01 cm³ or 1 x10⁻²
- 8. 2.14 kPa

Activity 6 Using the delta symbol

1. D

2. C

3. The reactions is **exothermic** and therefore ΔH is **negative**.

Act	ivity 7 Electro	lysis
1.	current flows comment ab	esis describes the relationship between the amount of time the s and how much copper is deposited on the electrode, include a out the proportionality. For example: There is a linear relationship time a current flow and the amount of copper being deposited.
2.	Ų.	he current flows the more copper will be deposited on the electrode tionship is linear.
3.		
	a. the length	n of time the current flows
	b. the amou	nt of copper deposited.
	c. strength c	of the current and the concentration of copper sulphate.
4.	by another p result is four Repeatable	e – A measurement is reproducible if the investigation is repeated berson, or by using different equipment or techniques and the same nd. – A measurement is repeatable if the original experimenter repeats ation using the same method and equipment and obtains the same
5.	Most school	balances have a resolution of 0.01 g.
6.		neasurements and calculating a new mean. Also remember, when ulating a mean you need to disregard any anomalous readings.
7.	cause uncer taking more	ors are present when any measurement is made. Random errors tainty in the results. You can reduce the effect of random errors by measurements and calculating a new mean. By reducing random an make your results closer to the true value so more accurate.
8.		
	2 mins.	0.63 g (value of 0.45 is anomalous)
	4 mins	0.85 g
	6 mins	0.99 g
	8 mins	1.06 g
	10 mins	1.11 g

Activity 8 Using Maths skills

a. 4 x 10³ b. 1 x 10⁶

2. 5.51368 x 10⁵

3.

1.

- a. 5.77 x 10⁴ b. 4.53 x 10⁻¹
- 4. The relative molecular mass of NaF is 42.0 Mass NaF in 1 g = 2.88 × 10⁻⁵ × 42.0 = 1.210 (or 1.2096) × 10⁻³ g Mass NaF in 1 kg = 1.210 (or 1.2096) g (Mass in mg = 1210 (or 1209.6) mg) Concentration of NaF = 1.21 x 10³ ppm

Activity 9 Atoms		
1.		
a. 76		
b. 82		
c. 11		
d. 17		
2.		
a. 4		
b. 223		
c. 137.3		
d. 16		
-		
3.		
a. 10		
b. 5		
c. 118		

Activity 10 Formulae of common compounds		
1. CH ⁴		
2. H ₂ SO ₄		
3. KMnO ₄		
4. H ₂ O		

Activity 11 lons and ionic compounds
1. MgBr ₂
2. BaO
3. ZnCl ₂
4. NH ₄ Cl
5. (NH4) ₂ CO ₃
6. AlBr ₃
7. Ca(NO ₃) ₂
8. FeSO4
9. Fe ₂ (SO4) ₃

Activity 12 Empirical formula

1. $C_3H_6O_1$

Explanation:

Element	Carbon	Hydrogen	Oxygen
mass / relative atomic mass	0.360 / 12	0.060 / 1	0.16 / 16
Amount in moles	0.03	0.06	0.01
Divide by smallest value	0.03/0.01	0.06/0.01	0.01/0.01
Ratio	3	6	1

2. Ti₂C₃O₉

Explanation:

Element	Titanium	Carbon	Oxygen
mass / relative atomic mass	0.479 / 47.9	0.18 / 12	0.72 / 16
Amount in moles	0.010	0.015	0.045
Divide by smallest value	0.010 /0.010	0.015 / 0.010	0.045 / 0.010
Ratio	1	1.5	4.5

The calculation lead to the proportions being 1: 1.5: 4.5. However, ratios in empirical formulae must be whole numbers. If the number is too far to round, then multiply to get whole numbers i.e. 2: 3: 9 leading to the empirical formula $Ti_2C_3O_{9.}$

3. $C_2H_6O_2$

Explanation:

Firstly, calculate the mass of oxygen (monatomic O):

300 – (145.9 + 24.32) = 129.78 g

Element	Carbon	Hydrogen	Oxygen
mass / relative atomic mass	145.90/ 12	24.32 / 1	129.78 / 16
Amount in moles	12.16 (rounded to 2 dp)	24.32	8.11
Divide by smallest value	12.16 / 8.11	24.32 / 8.11	8.11/8.11
Ratio	1.50 (rounded to 2 dp)	3.00 (rounded to 2 dp)	1.00

The proportions are is 1.5: 3: 1. However, ratios can only be whole numbers, leading to $C_2H_6O_2$. This is the most likely empirical formula for ethane-1,2-diol (ethylene glycol).

4. CH₂O

Explanation: calculate the percentage carbon and oxygen, which are equal:

 $100 - 5.99 = 94.01 \div 2 = 47.01\%$ (2 dp) each for carbon and oxygen.

Element	Carbon	Hydrogen	Oxygen
% / relative atomic mass	47.01 / 12	5.99 / 1	47.01 / 16
Amount in moles	3.92 (rounded to 2 dp)	5.99	2.94 (rounded to 2 dp)
Divide by smallest value	3.92 / 2.94	5.99 / 2.94	2.94 / 2.94
Ratio	1.33 (rounded to 2 dp)	2.04 (rounded to 2 dp)	1.00

The proportions are 1.33: 2.04: 1. These can be rounded to give the ratio 1:2:1.

Activity 13 Balancing equations

1.

- a. $4AI + 3O_2 \rightarrow 2AI_2O_3$
- b. $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
- c. $CaCO_3 + 2HCI \rightarrow CaCl_2 + H_2O + CO_2$

2.

Stage 1: $4CuFeS_2 + 9\frac{1}{2}O2 + 4SiO_2 \rightarrow Cu_2S + 2Cu_2O + 7SO_2 + 4FeSiO_3 \rightarrow$

```
Stage 2: Cu_2S + 2CuO \rightarrow 4Cu + SO_2
```

Activity 14 Moles				
Substance	Mass of substance in grams	Amount in moles	Number of particles	
Helium	12.04	3.01 (rounded to 2 dp)	18.12 × 10 ²³	
Chlorine (CI)	14.2	504.1	3.034682 × 10 ²⁶	
Methane	64	4	2.408 × 10 ²⁴	
Sulfuric acid	4.905	481.18 (rounded to 2 dp)	2.8967036 × 10 ²⁶	

Act	Activity 15 Isotopes and calculating relative atomic mass		
1.	80		
2.	20.18	divide each percentages by 100. multiply the result for each isotope by the relative atomic mass add the results together express to 4 significant figures	
3.	⁶³ Cu =	69.17% ⁶⁵ Cu = 30.83%	

Activity 16 Extended writing: Types of bonding

The command word is 'compare'. The answer could written in bullet points, prose or presented in a table with clear heading and a brief explanation of what you have done. The answer needs to consider both similarities and differences of the bonds between all three types of bonds.

Similarities

- They all have the electrostatic force of attraction, making strong bonds.
- They hold one atom to another atom.
- The bonding between the atoms results in to forming a stable compound.
- All three types of bonding give different properties, than the original elements.

Differences

These are some points to consider.

Covalent

- A single covalent bond contains a shared pair of electrons.
- · Bonds between atoms are strong.
- Multiple bonds contain multiple pairs of electrons.
- Occur in most non metallic elements and in compounds of non- metals.
- A co-ordinate (dative covalent) bond contains a shared pair of electrons with both electrons supplied by one atom.

Metallic

- During metallic bonding the particles are atoms which share delocalised electrons.
- They occur in metallic elements and alloys.
- The attraction between delocalised electrons and positive ions arranged in a regular lattice structure.
- The sharing of delocalized electrons gives rise to strong metallic bonds.

Ionic

- Electrons in the outer shell of the metal atom are transferred.
- Ionic bonding involves electrostatic attraction between oppositely charged ions in a lattice.
- There is strong electrostatic forces of attraction between oppositely charged ions.
- Occurs in compounds formed from metals combined with non metals.